Strategien: Grünlandumbruch – No-Go!

Landwirtschaftlich genutzte Böden bestehen aus Humus (= Organische Masse) und Mineralboden (= Mineralische Masse).

Pferdeweiden müssen gepflegt werden. Nur so bleiben sie wertvolles Dauergrünland.

Zur Erinnerung: Organische Masse (Blätter, Pflanzenleichen, Wurzeln, Mist, Gülle, Stroh, usw.) ist nicht pflanzenverfügbar. Die Wurzeln der lebenden Pflanzen können Humus nicht aufnehmen und die im Humus enthaltenen Nährstoffe deshalb nicht aufnehmen. Erst wenn das Bodenleben (Bakterien, Viren, Pilze, Regenwürmer, Tausendfüssler, usw.) die Organische Masse in Mineralische Masse umgewandelt hat, können die Pflanzen die Nährstoffe aufnehmen und verwerten. Natürlich brauchen Lebewesen, also auch das Bodenleben, eine lebenswerte Umgebung mit Sauerstoff, Feuchtigkeit und Wärme. Je besser die Lebensbedingungen für das Bodenleben, und dazu gehört auch das ausreichende Futterangebot mit Humus, desto höher ist die Umwandlung von Humus in Mineralische Masse. Einfach ausgedrückt: Das Bodenleben ernährt sich vom Humus und scheidet mineralische Nährstoffe aus. Je mehr Mineralisierung, desto besser werden die Pflanzen ernährt. Nehmen die auf der Fläche wachsenden Pflanzen wegen Überversorgung die Mineralische Masse nicht auf, sackt diese mit dem Regenwasser in Richtung Grundwasser.

Organische Masse (nicht pflanzenverfügbar)—->
Bodenleben ernährt sich und wandelt um
Mineralische Masse (pflanzenverfügbar)
z.B. Eiweiß (Protein)—->
Bodenleben ernährt sich und wandelt um
Stickstoff (Nitrat NO3, Ammonium NH4)
Eiweißreiche Pflanzenreste (Humus) werden vom Bodenleben „gefressen“. Ausgeschieden wird mineralisches Eiweiß (Stickstoff in Form von Nitrat und Ammonium). Die Pflanze nutzt den mineralischen Nährstoff Stickstoff z.B. für ihr Wachstum und bildet Blätter. Sie enthalten wieder organisches Eiweiß. Der Kreislauf beginnt wieder bei den eiweißreichen Pflanzenresten.

Grünlandböden haben wesentlich mehr Humusanteile als Ackerböden.

GrünlandbodenAckerboden
30 – 80 dt/ha/p.a. Organische Trockenmasse5 – 30 dt/ha/p.a. Organische Trockenmasse

Der Humusabbau durch Mineralisierung ist unter landwirtschaftlicher Nutzung, auch der Pferdehaltung, schneller (2 – 4 Jahre) als der Humusaufbau. Im Durchschnitt werden 1 – 5% der Organische Masse im Jahr minimalisiert. Um den Humusgehalt halten zu können, muss deshalb als Ausgleich ebenfalls 1 – 5% Organische Masse pro Jahr dem Boden wieder zugeführt werden (Stroh, Gülle, Mist, Mulch, Kompost, usw.). Um einmal Durchschnittszahlen zu nennen: 1 – 4 dt (100 kg – 400 kg) Organische Trockenmasse je Hektar (10.000 m2). Das entspricht etwa 100 dt Rindermist je Hektar. Gleichzeitig ist mit dieser Menge auch die durch die Pflanzen entzogene Stickstoffmenge dem Boden wieder zugeführt.

Warum ist der Nährstoffkreislauf Organische Masse -> Mineralische Masse -> Organische Masse defizitär?

Dafür gibt es mehrere Gründe: Zunächst einmal fressen die Pferde Gras (Organische Masse). Einen Teil scheiden sie wieder mit den Pferdeäpfeln aus, haben allerdings vorher Nährstoffe für sich selber verbraucht, wie Eiweiß zum Muskelaufbau und Zucker und Stärke zur Bewegung und Heizung. Wenn dann der Pferdeapfel in den Boden gelangt, nutzt zunächst das Bodenleben die restlichen Nährstoffe zur Ernährung, Bewegung und Heizung. Das ist der Grund, dass aktives Bodenleben bei der Umwandlung von organischer zu mineralischer Masse z.T. hohe Temperaturen erzeugt, bis hin zum Scheunenbrand durch Selbstentzündung.

Übrigens: So heizt ein Pferd und übersteht locker den Winter. Diese „Heizung“ funktioniert allerdings nur ausreichend, wenn genügend Grundfutter (Heu, Stroh, Gras, Silage) gefüttert wird ( 2 -2,5 kg Raufutter/ 100 kg Lebensmasse). Erst dann befindet sich genügend organische Masse für die Verdauungsbakterien in den Dickdärmen, um durch die Verdauung genügend Wärme zu produzieren, dass das Pferd nicht friert. Also: Heu statt Decke!

Grünland hat teilweise die selbe Menge Organische Masse unterirdisch als auch überirdisch. Immer wieder wird propagiert, zur Sanierung das Grünland umzupflügen (umbrechen) und neu anzusehen. Teilweise wird das standardmäßig alle 7 – 10 Jahre vorgeschlagen. Vor dem Grünlandumbruch muss dringend gewarnt werden, denn mit dem Belüften und der Erwärmung des umgebrochenen Bodens werden die großen Organischen Massen durch das Bodenleben mineralisiert. Die mineralischen Stickstoffmengen sind übermäßig hoch und können von den wenigen Pflanzen gar nicht restlos aufgenommen werden. Die Überschüsse gehen mit dem Regen in Richtung Grundwasser und reichern dieses mit Nitrat an. Bei einem Grünlandumbruch versichern durchschnittlich 5 t Nitrat je Hektar in das Grundwasser. Zusätzlich werden größere Mengen klimaschädliches Gas, wie Methan- und Lachgas frei.

Der Grünlandumbruch ist aus Sicht des Klimaschutzes und des Grundwasserschutzes eine wirkliche Katastrophe. Pferdehalter haben deshalb die Verpflichtung, das Pferdegrünland so zu pflegen, dass es wirkliches Dauergrünland ist und bleibt. Dabei muss allen Pferdehaltern klar sein, dass das biologisch so wertvolle Dauergrünland bis auf wenige Ausnahmen in Deutschland immer anthropogen beeinflusst ist und einer ständigen Pflege bedarf: Die Weidepflege. Ohne diese gibt es kein Dauergrünland in Deutschland, auch nicht für unsere Pferde. Laissez faire beim Grünland wird weder unserer Landschaft, unseren Pferden noch der Umwelt gerecht. Umso mehr in Zeiten des fortschreitenden Klimawandels.

Strategien: Das Wasser in der Landschaft behalten

Es ist ein ständiges Tauziehen: Naturschützer wollen das Wasser in der Landschaft behalten damit es in den Boden eindringt und als Wasserspeicher fungiert und Landwirte drängen auf Drainage ihrer Anbauflächen, um auch Moore, Feuchtgebiete, Auen und Überflutungsflächen, die früher lediglich eingeschränkt als Grünland nutzbar waren, landwirtschaftlich zum Getreide- oder Maisanbau nutzen zu können.

Mit einer intelligenten Wasserführung lässt sich das Wasser in der Landschaft halten. Die nächste Dürrezeit kommt bestimmt. Im Boden gespeichertes Wasser hilft in der Trockenzeit.

Im Zeichen des fortschreitenden Klimawandels kann die über Jahrzehnte praktizierte Entwässerung der Landschaft so nicht mehr verantwortet werden. War es bisher üblich, dass die Entwässerungsverbände/ Wasserwirtschaftsverbände oft dem Wunsch der Landwirtschaft nach Entwässerung weitgehend nachkamen, so konnte auch auf feuchten Böden intensive Landwirtschaft betrieben werden. Durch die Entwässerung werden die Bodenporen belüftet und die durch das hohe Grundwasser konservierte organische Masse wird durch das auflebende Bodenleben mineralisiert. Große Mengen nicht von Pflanzen aufgenommener Stickstoff sickern in das Grundwasser und gleichzeitig wird klimaschädliches Gas, vorrangig Kohlenstoffdioxid und Lachgas, frei und gelang in die Atmosphäre. Besonders kritisch sind die Lachgaseinträge in die Atmosphäre, weil sie ca. 300 x klimaschädlicher als Kohlenstoffdioxid sind. Weitere Folge ist, dass der nunmehr mineralisierte Boden deutlich dichter ist als ein Boden mit hohem organischen Anteilen: der Boden sinkt in Richtung Grundwasser. Die Landwirte stellen fest, dass ihre Böden wieder zu nass werden und drängen auf vermehrte Entwässerung. Eine Schraube ohne Ende. Wer diesen Effekt direkt beobachten möchte, der/die kann gut geologische Karten aus verschiedenen Zeitabschnitten vergleichen. Die Flächen sinken immer tiefer ab.

Wenn organische Masse, wie z.B. Torf oder Wurzelgeflechte, belüftet werden, wandelt das sich entwickelnde Bodenleben die organische Masse in mineralische Masse (Mineralboden) um. Die Dichte des Mineralbodens ist größer, der Boden sinkt zusammen und in Richtung Schwerpunkt. Die Landschaft fällt tiefer. Bis zu 3 – 4 cm pro Jahr. Die ursprüngliche Landschaftshöhe kann man/frau jederzeit an unten Brücken erkennen, die auf den ortsstabilen Sand gegründet werden.

Besonders eindrucksvoll sind z.B. Brücken über Entwässerungsgräben auf Feldwegen. Diese sind meist tief bis in den Sand oder auf den Fels gegründet und senken sich, im Gegensatz zu den Feldwegen und der umgebenden Landschaft, nicht ab, sie stehen immer höher in der Landschaft. Jetzt wisst Ihr, warum manche Brücken zu Ölwannenkillern werden und deshalb alle Jahre die Anfahrten immer wieder angeflickt werden müssen.

Moore und Feuchtgebiete sind wertvolle Wasserspeicher. Deren Trockenlegung verhindert nicht nur Wasserspeicher für sommerliche Dürrezeiten, sondern produziert das klimaschädigende Treibhausgase, wie Kohlenstoffdioxidgas und und das besonders klimaschädigende Lachgas.

Neben der Vermeidung der Nitratanreicherung und dem Eintrag von klimaschädigendem Treibhausgase (CO2 und N2O) verbietet der Klimawandel mit seinem deutlichen Temperaturanstieg das Ableiten des Oberflächenwassers aus der Landschaft. Die Folgen der Dürresommer in den letzten Jahren lassen sich nur noch durch eine intelligente Wasserhaltestrategie in der Landschaft abmildern. Wasser steht in Deutschland bereits jetzt nicht mehr grenzenlos zur Verfügung, der Verteilungskampf hat bereits begonnen. Neben der vermehrten Anstauung des Oberflächenwassers in Gräben, der Wiederbelebung von Teichen, Seen, Überflutungsflächen und Auen müssen Feuchtgebiete, Moore und Flussläufen mit Pegelpendelraum renaturalisiert werden. Das Wasser muss in der Landschaft bleiben und darf nicht entsorgt werden, um die zunehmende Frühjahrs- und Sommerdürre abfedern zu können.

Das bedeutet aber auch, dass nicht an jedem Tag das Grünland von den Pferden beweidet werden kann. Wenn in der vegetationsfreien Winterzeit der Boden vermehrt Wasser speichern soll, dann hat das natürlich Auswirkungen auf die Trittfestigkeit des Grünlandes.

Wir müssen uns entscheiden: Dauernde, konsequente Entwässerung und Trittfestigkeit über das ganze Jahr mit dem Nachteil einer Futtermittelknappheit im Sommer oder aber ein Beweidungsstopp im Winter mit der Möglichkeit der Wasserspeicherung des Bodens und einer auskömmlichen Futterproduktion für unsere Pferden.

Beides, konsequente Entwässerung mit Allwetterweiden und ausreichende Futterproduktion gibt es heute und zukünftig nicht mehr.

Beobachtungen zum Klimawandel: Deutschlandwetter Oktober 2020

Ein sehr sonnenscheinarmer, niederschlagsreicher und zu warmer Oktober

Offenbach, 30.10.2020 – Im Oktober 2020 standen die Zeichen auf Unbeständigkeit. Tiefdruckgebiete mit feuchten Luftmassen brachten neben sehr vielen Wolken wiederholte, teils auch kräftige Niederschläge, mit vereinzelten Gewittern, sowie einen Wechsel zwischen kurzen kühlen und milden Witterungsabschnitten. Aber auch eine Sturmflut an der Ostsee, sowie ein Föhnsturm in den Alpen, gehörten mit zum Wetterprogramm. Im Ergebnis war der Oktober zu warm, zu nass und ungewöhnlich wolkenreich. Das meldet der Deutsche Wetterdienst (DWD) nach ersten Auswertungen der Ergebnisse seiner rund 2000 Messstationen. 

Oft mild, in der zweiten Monatsdekade länger kühl mit leichten Nachfrösten
Mit 10,2 Grad Celsius (°C) lag im Oktober der Temperaturdurchschnitt für Deutschland um 1,2 Grad über dem Wert der international gültigen Referenzperiode 1961 bis 1990. Im Vergleich zur wärmeren Periode 1981 bis 2010 betrug die Abweichung 1,0 Grad. Der Monat startete mit Werten von über 20 °C recht mild. Unter Föhneinfluss wurde am 3. aus Kiefersfelden-Gach, im Landkreis Rosenheim, mit 24,6 °C die deutschlandweit höchste Temperatur gemessen. Ab der zweiten Monatsdekade drehte sich das Blatt und es stellte sich ein kühler Witterungsabschnitt ein. Bei Höchsttemperaturen von teils unter 10 °C traten vor allem in den östlichen und südlichen Regionen leichte Nachtfröste auf. Oberstdorf meldete mit -4,4 °C am 14. den bundesweit tiefsten Wert. In der dritten Monatsdekade stieg das Quecksilber wieder an. Zeit- und gebietsweise gab es dann sogar noch einmal Höchsttemperaturen über 20 °C. 

Ein nasser Oktober mit besonders hohen Niederschlagsmengen in den Mittelgebirgen
Aufgrund wiederholtem Tiefdruckeinfluss erreichte der Oktober 2020 mit über 75 Litern pro Quadratmeter (l/m²) 139 Prozent seines Klimawerts von 56 l/m². Zu Beginn des Monats konzentrierten sich die Regenwolken vor allem auf die westlichen Landesteile. Zur Monatsmitte aber sandte das Tief GISELA von Polen und Tschechien her auch den östlichen Bereichen kräftige Niederschläge. Dabei wurde am 14. die höchste Tagessumme von 64,4 l/m² an der Station Wernigerode-Schierke, im Landkreis Harz, gemessen. Mehrere Starkregenereignisse führten in Sachsen und Sachsen-Anhalt in der Monatsbilanz zu doppelt so hohen Mengen als zu erwarten wäre. Die höchsten Summen aber prasselten im Monatsverlauf mit über 200 l/m² im Südschwarzwald und Harz vom Himmel. Andererseits gab es im Lee von Hunsrück, Eifel und Rhön, sowie an der Ostseeküste, regional nur um 30 l/m². 

Ein ungewöhnlich wolkenreicher Oktober
Im Oktober lag die Sonnenscheindauer mit fast 70 Stunden deutlich unter ihrem Soll von 109 Stunden. Damit war es der fünftsonnenscheinärmste Oktober seit 1951. Besonders in den westlichen Gebieten schien die Sonne so selten wie seit 1998 nicht mehr. In den dortigen Mittelgebirgen gab es örtlich im gesamten Monat keine 40 Sonnenstunden. Aber auch sonst blieb die Sonne sehr zurückhaltend. Nur an den Küsten sowie im Alpenvorland zeigte sie sich mit rund 100 Stunden häufiger zwischen den Wolken. 

Das Wetter in den Bundesländern im Oktober 2020
(In Klammern stehen jeweils die vieljährigen Mittelwerte der intern. Referenzperiode)

Schleswig-Holstein und Hamburg: Im Oktober meldete das nördlichste Bundesland eine Temperatur von 10,9 °C (9,5 °C), eine Niederschlagsmenge von gut 80 l/m² (73 l/m²) und als sonnigstes Gebiet fast 90 Sonnenstunden (98 Stunden). Hamburg war mit 11,2 °C (9,8 °C) nach Berlin die zweitwärmste Region. Neben rund 75 l/m² (60 l/m²) Niederschlag zeigte sich in der Hansestadt die Sonne aufgerundet 70 Stunden (97 Stunden).

Niedersachsen und Bremen: Niedersachsen registrierte im Oktober 11,0 °C (9,6 °C), rund 75 l/m² (56 l/m²) und etwa 70 Sonnenstunden (99 Stunden). Bremen erreichte 11,1 °C (9,8 °C). Mit einer Niederschlagsmenge von rund 65 l/m² (58 l/m²) und einer Sonnenscheindauer von etwa 80 Stunden (98 Stunden) war die Hansestadt die zweitsonnigste Region. 

Mecklenburg-Vorpommern: In Mecklenburg-Vorpommern ermittelte der DWD eine Temperatur von 11,1 °C (9,3 °C). Mit 55 l/m² (42 l/m²) Niederschlag landete es als trockenstes Bundesland auf dem letzten Platz im Niederschlagsranking. Die Sonne zeigte sich 75 Sunden (105 Stunden). Am 14. bewirkte ein Nordoststurm mit Böen bis 100 km/h eine Sturmflut mit 5 Meter hohen Wellen. Wie in Wismar stiegen die Pegel an manchen Orten auf 1,40 Meter.

Brandenburg und Berlin: Brandenburg erreichte eine Mitteltemperatur von 11,0 °C(9,3 °C). Die Hauptstadt meldete 11,3 °C (9,6 °C) und war die wärmste Region in Deutschland. Brandenburg mit knapp 65 l/m² (37 l/m²) und Berlin mit etwa 55 l/m²(35 l/m²) erlebten 2020 einen recht nassen Oktober. Die Sonne zeigte sich sowohl in Brandenburg (110 Stunden) als auch in Berlin (109 Stunden) fast 70 Stunden.

Sachsen-Anhalt: Der Oktober 2020 erwies sich in Sachsen-Anhalt mit einer Temperatur von 11,1 °C (9,4 °C) als zu warm und mit einer Niederschlagsausbeute von etwa 75 l/m² (36 l/m²) als deutlich zu nass. Am 14. meldete Wernigerode-Schierke, im Landkreis Harz, mit 64,4 l/m² die höchste Tagessumme. Im gesamten Monat fielen dort fast 250 l/m². Der Brocken kam sogar auf über 350 l/m². Die Sonne schien in Sachsen-Anhalt rund 70 Stunden (104 Stunden).

Sachsen: Sachsen erreichte eine Durchschnittstemperatur von 10,3 °C (9,0 °C). Mitte des Monats brachte das Tief GISELA ordentlich Regen. Dabei fielen alleine am 14. verbreitet zwischen 20 und 40, örtlich sogar bis 50 l/m². Insgesamt konnten bis zum Monatsende in der Fläche fast 100 l/m² (47 l/m²) gemessen werden und damit das Doppelte der zu erwartenden Niederschlagsmenge. Sachsen war die zweitnasseste, aber mit etwa 75 Stunden (118 Stunden) auch eine der sonnigen Regionen.

Thüringen: Hier betrug die Temperatur im Oktober 9,9 °C (8,4 °C). Damit gehört Thüringen zu den kühleren Gebieten. Hinzu kamen im Flächenmittel nasse 80 l/m²(48 l/m²). Im Thüringer Wald fielen sogar über 150 l/m². Die Sonne zeigte sich rund 65 Stunden (107 Stunden). 

Nordrhein-Westfalen: Im einwohnerreichsten Bundesland ermittelte der DWD eine Durchschnittstemperatur von 10,7 °C (9,8 °C). Dazu fielen abgerundet 80 l/m² (62 l/m²) Niederschlag. Mit nur etwa 50 Stunden (107 Stunden) schien die Sonne so selten wie seit 1998 nicht mehr. 

Hessen: In Hessen betrug die Temperatur im Oktober 10,2 °C (8,9 °C) und die Niederschlagsmenge rund 70 l/m² (59 l/m²). Nach dem zweitsonnigsten September zeigte sich der Oktober mit mageren 50 Stunden (100 Stunden) ungewöhnlich sonnenscheinarm.

Rheinland-Pfalz: Hier erreichte die Oktobertemperatur im Mittel 10,1 °C (9,2 °C) und mit rund 75 l/m² (63 l/m²) war es etwas zu nass. Mit 55 Stunden (105 Stunden) wurde der sonnenscheinärmste Oktober seit 1998 registriert.

Saarland: Das kleinste Flächenland meldete im Oktober durchschnittlich 10,0 °C(9,4 °C) und etwa 125 l/m² (77 l/m²). Dazu zeigte sich die Sonne ungewöhnlich selten. Lediglich 45 Stunden (106 Stunden) wurden erreicht und damit so wenig wie seit 1998 nicht mehr. Im Ländervergleich war das Saarland so das nasseste und sonnenscheinärmste Bundesland.

Baden-Württemberg: Hier wurde eine Temperatur von 9,4 °C (8,7 °C) gemeldet. Damit war Baden-Württemberg das zweitkühlste Bundesland. Im Flächenmittel fielen rund 85 l/m² (68 l/m²) Niederschlag. Der Südschwarzwald erreichte über 200 l/m². Die Sonne schien etwa 75 Stunden (117 Stunden). Es war der sonnenscheinärmste Oktober der letzten 20 Jahre. 

Bayern: Im größten Bundesland wurde im Oktober eine Temperatur von 8,9 °C (8,1 °C) ermittelt. Somit war der Freistaat die kühlste Region in Deutschland. Ein Föhnsturm brachte am 3. sehr milde Temperaturen. Dabei erreichte Kiefersfelden-Gach, im Landkreis Rosenheim, mit 24,6 °C die bundesweit höchste Temperatur. Auch der tiefste Wert stammt aus Bayern und wurde am Morgen des 14. mit frostigen -4,4 °C in Oberstdorf gemessen. Bei einer Niederschlagsmenge von rund 80 l/m² (61 l/m²), schien die Sonne in Bayern etwa 75 Stunden (118 Stunden). Quelle: DWD

Basics: Trockenmasse bestimmen

Wie schon in einem anderen Beitrag beschrieben, können Futtermittel nur verglichen werden, wenn deren Trockenmasse (TM) analysiert ist. (Hinweis: Die Trockenmasse wird wurde früher auch Trockensubstanz (TS) genannt).

Die Trockenmasse eines Futters kann jeder Pferdehalter*in in der Küche selber bestimmen:

Dazu wird ein handelsüblicher Backofen auf 105 Grad Celsius gestellt und das Futtermittel bis zur Gewichtskonstanz getrocknet. Einfacher ausgedrückt: Bis es kein Wasser mehr enthält. Natürlich wird das Futtermittel dann leichter. Die Gewichtsdifferenz zwischen feuchtem und trockenem Futtermittel wird ermittelt und prozentual bestimmt. Schon steht fest, wieviel Prozent Wasser und Trockenmasse das Futter enthielt.

Die Labortemperatur beträgt 105 Grad, damit das Wasser je nach Ortshöhe und Luftdruck sicher verdampft. Pferdehalter*innen können das entspannter sehen. Es sollte um 100 Grad eingestellt werden.

Ein Beispiel:

  1. Eine hitzebeständige Schale kommt auf die Haushaltswaage. Tara drücken und die Waage zeigt 0,00 oder ohne Tarafunktion Masse notieren. Bei einer Haushaltswaage mit Kunststoffauflage einen Stoffglasuntersetzer oder Bierdeckel unter die Schale vor Tara- Bestimmung legen und die ganze Zeit auf der Waage lassen.
  2. Ca. 200 g Futtermittel in die Schale geben und die Masse (z.B. 209 g Gras) auf der Haushaltswaage notieren. Damit die Probe komplett innerhalb der Schale ist, darf das Futter vor der Massenbestimmung mit einer Schere zerstückelt werden.
  3. Schale mit der Probe in den Backofen mit 105 Grad stellen. Wenn die Temperatur nur in größeren Abständen eingestellt werde kann, dann den Ofen auf 100 Grad stellen.
  4. Nach ca. 30 min die heiße Schale mit dem getrocknetem Futter auf die Waage stellen und die Masse notieren. Jetzt wird klar, warum die Kunststoffwaage eine temperaturisolierende Unterlage benötigt.
  5. Nach weiteren 15 min im Ofen die Schale mit der Probe wieder wiegen. Besteht keine Veränderung gegenüber der vorherigen Wiegung, ist das Wasser komplett verdampft, also Gewichtskonstanz erreicht. Diese Massenfeststellung ist das zu notierende Messergebnis: (z.B. Trockenmasse der Probe beträgt 35 g ). Wurde die Waage nicht in der Tarafunktion betrieben, nicht vergessen, die Masse der Schale abzuziehen!
  6. Jetzt kommt der Dreisatz: 209 g Grasprobe – 35g TM ;

209 g Grasprobe -> 35g TM

1 g Grasprobe -> 35 g TM ./. 209 g -> 0.1674641 g TM

1.000 g Grasprobe -> (35 g TM ./. 209 g) x 1.000 = 167.46411 g TM

Ergebnis: 1 .000 g der Grasprobe enthält 167.46411 g Trockenmasse (16,746411%) und 832.53589 g Rohwasser (83.253589 %). Und jetzt dürfen alle großzügig sein: 17% TM und 83% Rohwasser.

Merke:

  • Auch komplett trockenes Futter zieht aus der Umgebungsluft wieder Feuchtigkeit. Bei üblicher Lagerung (NICHT im Stall!) enthält Trockenfutter ca. 12% Rohwasser und 88% Trockenmasse.
  • Futtermittel sind nur lagerfähig, wenn sie maximal 14% Rohwasser enthalten. Alle anderen Futtermittel schimmeln (bei Vorhandensein von Sauerstoff, Aerobic) oder Faulen (bei Abwesenheit von Sauerstoff, anaerob). Ausnahmen sind nur Futtermittel, die anderweitig sicher konserviert wurden, wie z.b. fachgerecht gelagerte Silage.

Basics: Grundfutterversorgung für den Pferdebestand kalkulieren

Weideflächenbedarf (in m2 pro Tag) eines Pferdes auf einer Weide

Lebensmasse (LM)Grashöhe 15 cmGrashöhe 25 cm
200 kg 60 m2/d30 m2/d
400 kg 70 m2/d40 m2/d
600 kg100 m2/d60 m2/d
800 kg150 m2/d80 m2/d
Durchschnittswerte Deutschland bei üblichen Vegetationsbedingungen (Wachstumsfaktoren ausreichend), die Fläche benötigt dann eine ca. dreiwöchige Ruhephase zum Nachwachsen. Bei fehlendem Niederschlag und großer Hitze ist ein Nachwachsen in dieser Zeit nicht garantiert!

Mit welchem Ertrag ist aktuell zu rechnen?

Durchschnittlich ist bei üblichem Weidemanagement mit folgendem Ertrag zu rechnen:

Graswachstum (cm)Ertrag
1 cm Wuchshöhe1 dt* TM**/ha***/d****
* Dezitonne = 100 kg; ** Trockenmasse *** Hektar = 10.000m2; Tag
Grundfutter, wie Gras, Heu, Grassilage und Getreidestroh ist in der Pferdefütterung durch nichts zu ersetzen

Das Problem mit der Trockenmasse

Grundsätzlich sind Futtermittel (und auch Lebensmittel) nur in der Trockenmasse vergleichbar. Das gilt für die Nährstoffkonzentration als auch für den Preis. Bleiben wir beim Pferdegrünland: Im Frühjahr, bei Vorhandensein aller Wachstumsfaktoren, enthält Weidegras viel Wasser. Mit zunehmender Sommerwärme mit Verdunstung sowie vermehrter Struktur, Blüte und Frucht verliert das Gras Feuchtigkeit, der Wassergehalt der Pflanze sinkt.

Idealisierter Jahreslauf des Pferdegrünlandes Trockenmasse (TM) in g/kg Gras sowie Wasser (RW in g/kg Gras)

vor Ähren-schießenim Ähren-schießenin BlüteEnde Blüteüber-ständig2. AufwuchsHeu
Trocken-
masse
g/kg Gras
140150160175400140 – 160860
Roh-wasser
g/kg Gras
860850840825600860 – 840140

Fressen Pferde junges Gras, nehmen sie viel Wasser (saufen weniger), aber wenig Nährstoffe auf. Ganz anders bei einer überständigen, schon verstrohten Weide. Hier bekommen die Pferde deutlich weniger Wasser durch das Futter (müssen mehr saufen), dafür aber deutlich mehr Nährstoffe.

Merke: Ohne Berücksichtigung des Wasser- und Nährstoffbedarfs ist eine Futterzuteilung teilweise sogar lebensgefährlich!

Beispiel: Pferde soll 12 kg Heu bekommen. Um die selbe Nährstoffmenge zu erhalten, muss unter Berücksichtigung der Trockenmasse (Pferd bekommt 12 x 860 g TM = 10.320 g TM) aus dem Heu) genau 64,5 kg Gras in Blüte ( 10.320 ./. 160) zur Verfügung stehen. In dieser Weise muss auch vorgegangen werden, wenn Heu durch Silage ( oder andersherum) ersetzt wird.

Kommen wir zurück auf die Pferdeweide, die gerade 1 cm am Tag gewachsen ist. Entstanden sind 1 dt Trockenmasse pro Hektar, also 100 kg Trockenmasse je 10.000m2. Wenn ein durchschnittliches Großpferd etwa 65 kg Weide (in Blüte) frisst, nimmt es ca. 11,4 kg Trockenmasse auf. An diesem Tag könnten von dem Grasaufwuchs 8,77 Pferde satt werden. Dann aber muss gewartet werden, dass es am nächsten Tag wieder einen cm wächst. Wächst es nicht nach, weil es zu trocken und/oder zu warm ist, dann müssen die Pferde am nächsten Tag mit anderem Futter versorgt werden.

Mit dieser Rechnung kann auch ermittelt werden, wie hoch der Ertrag einer Mähwiese ist und welche Heumenge eingefahren werden kann. Damit dann auch das benötigte Lagervolumen.

Jahreslauftägl. Zuwachs
dt TM/ha
1.4.0,5
10.4.0,7
20.4.0,9
30.4.1,1
10.5.1,2
20.5.1,1
30.5.0,7
10.6.0,6
20.6.0,5
30.6.0,3
10.80,2
20.80,2
30.8.0,2
10.9.0,4
20.9.0,5
30.9.0,1
Beispielhafte Jahresertragskurve des Pferdegrünlandes. Die Erfassung der eigenen Daten ist für Pferdehalter sehr aufschlussreich und ist sehr zu empfehlen.

Anmerkung: Es hat niemand gesagt, dass Pferdehaltung einfach und das Weidemanagement nicht unheimlich komplex, anspruchsvoll und dadurch sogar spannend ist.

Strategien: Stickstoffdüngung reduzieren

Aus dem mineralischen Stickstoff im Boden bildet die Pflanze organisches Eiweiß. Das ist der Baustoff der Pflanzenzellen. Eine Erhöhung der Stickstoffversorgung steigert den Ertrag beim Grünland erheblich, das Gras hat eine wesentlich größere Blattmasse. Damit die Pflanze schneller wächst, entwickelt sie größere Pflanzenzellen und gleicht die abnehmende Stabilität durch einen höheren Wassergehalt der Zelle aus.

Federgras trotzt der Trockenheit durch eine reduzierte oberirdische Blattmasse und verhindert übermäßige Verdunstung. „Bezahlt“ wird diese Strategie durch einen niedrigeren Ertrag.

Großzügig mit Stickstoff versorgte Pflanzen haben einen wesentlich höheren Wassergehalt als Pflanzen auf stickstoffärmeren Flächen. Der höhere Ertrag mit dem einhergehenden höherem Wassergehalt hat aber auch Nachteile:

  • Schadinsekten, Viren und Pilze bevorzugen wasserhaltige Pflanzen > Erhöhter Schadbefall (1. Beispiel Rosen: Hohe N- Düngung provoziert Mehltau und Lausbefall. 2. Beispiel: Hohe N- Einträge aus der Luft lassen den Wald schneller wachsen, das Holz ist aber feuchter und weniger stabil sowie vermehrt von Schädlingen befallen. Stickstoffeinträge aus der Luft (NOx) aus den Autoabgasen trägt zum Waldsterben bei)
  • Verminderte Halmstabilität > Kultur liegt nach Regen und Wind leicht am Boden >Schimmel, Verschmutzung und Fäulnisbildung
  • Deutlich verringerte Trockenresistenz > Pflanze verbraucht und verdunstet viel Wasser
  • Weniger Strukturstoffe, weicher Griff
  • Hoher Eiweißgehalt der Pflanze > vielfach Überversorgung der Pferde > Abbau über die Nieren > erhöhte Nierenbelastung > reduzierte Energie für Arbeitsleistung

Merke: Eiweiß = Baustoff , Energie = Treibstoff

Wegen des bereits einsetzenden Klimawandels sind die bisherigen Düngeempfehlungen für Stickstoff beim Pferdegrünland nicht mehr zeitgemäß, weil zu hoch!

Warum die Stickstoffdüngung reduzieren?

  • Durch längere Dürreperioden findet im Hochsommer kaum noch Graswachstum statt. Folglich benötigt die Pflanze im Einfluss des Klimawandels wesentlich weniger Stickstoff, also Wachstumsdünger. Da vielerorts es keinen zweiten Aufwuchs mehr gibt (Hitze und Wassermangel) benötigt das Grünland oftmals ca. 30% weniger Stickstoff.
  • Da Stickstoff stark auswaschungsgefährdet ist und ins Grundwasser gelangt (Nitratbelastung!), muss zielgenau der Wachstumsdünger ausgebracht werden. Wird z.B. in eine Dürreperiode herein gedüngt, wird die Stickstoffmenge nicht von der Pflanze aufgenommen und kann bereits bei einem heftigen Gewitterregen in Oberflächengewässer oder ins Grundwasser gespült werden.
  • Durch hohe Stickstoffeinträge aus der Luft (z.B. Straßenverkehr (NOx)) wird heute wesentlich mehr Wachstumsdünger wirksam und muss von dem Düngebedarf abgezogen werden.

    Merke: Was wegen Hitze und Trockenheit nicht wächst, darf auch nicht mit Stickstoff gedüngt werden! Pferde profitieren übrigens von dem stickstoffreduzierten Grundfutter.

Exakte Düngeempfehlungen des Wachstumsdüngers Stickstoff sind nicht möglich, da stark abhängig vom Klima, dem Boden, der Jahreszeit, dem Tierbesatz, dem Ökosystem, usw.)

Folgende Düngemengen für das Nährelement Stickstoff (N) können aber beispielhaft für das Pferdegrünland empfohlen werden:

1. Teilgabe2. Teilgabe
Düngeempfehlung (Reinnährstoff)
pro Jahr und Hektar* (kg/a/ha)
Wachstumsbeginn2. Aufwuchs bzw. 2. Schnitt
40 kg N30 kg N10 kg N
* 1 Hektar = 10.000 m2nur, wenn noch Wachstum stattfindet!

Eines muss aber jedem Pferdehalter*in klar sein: Durch den Klimawandel und die notwendige Düngerreduzierung wird es weniger Ertrag geben und somit wird der Flächenbedarf zur Sicherstellung des Grundfutters mindestens auf durchschnittlich 1 Hektar je Pferd (10.000 m2) steigen.

Merke: Dauergrünland ist in Mitteleuropa fast immer anthropogen beeinflusst und überwiegend auf eine nachhaltige Stickstoff- Düngung angewiesen. Das kann durch mineralischen Stickstoff (z.B. NH4 oder NO3) bzw. durch organischen Stickstoff (Mist, Gülle, Humus, Mulch, usw.) vorgenommen werden. Ohne Stickstoffversorgung wird es, bis auf wenige Ausnahmen, bei uns in Deutschland kein Dauergrünland geben können. Es gehört mittlerweile zu den gefährdeten Kulturflächen in Deutschland.

Beobachtung zum Klimawandel: Deutschlandwetter Sommer 2020

Offenbach, 31. August 2020 – Der Sommer 2020 zeigte sich oft wechselhaft. Zeitweise stabile Wetterlagen brachten dabei nur kurzzeitig hochsommerliche Wärme. Erst im August drehte der Hochsommer voll auf. In tropischer Luft stiegen die Temperaturen über mehrere Tage hinweg auf 30 Grad Celsius (°C) und mehr. Hier und da entluden sich schwere Starkregengewitter, mancherorts blieb es aber weiterhin sehr trocken. Unter dem Strich war der Sommer 2020 bei ausgeglichener Sonnenscheindauer zu warm und etwas zu trocken. Das meldet der Deutsche Wetterdienst (DWD) nach ersten Auswertungen der Ergebnisse seiner rund 2 000 Messstationen.

Im Juni und Juli „Schaukelsommer“ mit schwankenden Temperaturen
Mit 18,2 °C lag der Sommer 2020 um 1,9 Grad über dem Mittel der international gültigen Referenzperiode 1961 bis 1990. Gegenüber der wärmeren Vergleichsperiode 1981 bis 2010 betrug die positive Abweichung 1,1 Grad. In den Monaten Juni und Juli waren stabile hochsommerliche Phasen eine Seltenheit. Kühle und warme Witterungsphasen wechselten sich ab, sodass die ersten Sommermonate eher einem „Schaukelsommer“ glichen. Erst im August führte eine mehrtägige Hitzewelle mit Temperaturen von über 35 °C zu einer landesweiten hohen bis extremen Wärmebelastung. Die deutschlandweit höchste Temperatur wurde am 9.8. mit 38,6 °C in Trier-Petrisberg gemessen. Die niedrigsten Frühtemperaturen wurden vom DWD Anfang Juni registriert. Am 1.6. übermittelte die Station Oberharz am Brocken-Stiege frische 0,5 °C.

Starkregen, Überflutungen, Hochwasser und regional weiterhin sehr trocken
Mit rund 230 Litern pro Quadratmeter (l/m²) Niederschlag im bundesweiten Mittel verfehlte der Sommer 2020 sein Soll (239 l/m²) nur leicht. Oftmals lagen Starkregenfälle mit Überflutungen und anhaltende Trockenheit nah beieinander. In einigen Regionen, wie der Uckermark, der Leipziger Tieflandbucht, dem Saarland und entlang des Rheins fielen mit 70 bis 100 l/m² weniger als die Hälfte der dort typischen Niederschlagsmenge. Zugleich gab es Dauerregenfälle, wie Anfang August mit bis zu 150 l/m² in 24 Stunden in Oberbayern, die auch Hochwasser brachten. Insgesamt wurden an den Alpen über den Sommer hinweg über 700 l/m²gemessen und damit zehnmal so viel, wie in den trockenen Regionen Deutschlands.

Ausgewogene Sonnenscheinbilanz
Mit rund 675 Stunden übertraf die Sonnenscheindauer im Sommer ihr Soll von 614 Stunden um etwa 10 Prozent. Über 700 Stunden Sonnenschein verzeichneten die Küstenregionen. In den westlichen Mittelgebirgen wurden vom DWD dagegen nur um 500 Stunden gemessen. 

Das Wetter in den Bundesländern im Sommer 2020
(In Klammern stehen jeweils die vieljährigen Mittelwerte der intern. Referenzperiode) 

Schleswig-Holstein und Hamburg: Im Sommer erfassten die Stationen des DWDin Schleswig-Holstein eine Mitteltemperatur von 17,4 °C (15,8 °C) und 225 l/m² (222 l/m²) Niederschlag. Damit war das nördlichste Bundesland die kühlste und eine nasse Region. In der Hansestadt war es mit 18,3 °C (16,5 °C) und 195 l/m² (218 l/m²) deutlich zu warm und auch zu trocken. Die Sonne schien sowohl in Hamburg (618 Stunden) als auch in Schleswig-Holstein (645 Stunden) rund 710 Stunden. Es waren nach Berlin die zweitsonnenscheinreichsten Regionen.

Niedersachsen und Bremen: In Niedersachsen wurden im Sommer warme 18,0 °C(16,2 °C), 205 l/m² (219 l/m²) Niederschlag und 625 Stunden (583 Stunden) Sonnenschein gemessen. Bremen erreichte 18,4 °C (16,4 °C), trockene 185 l/m²(219 l/m²) und 665 Sonnenstunden (589 Stunden). 

Mecklenburg-Vorpommern: Im nordöstlichsten und vergleichsweise kühlen Bundesland betrug die Sommertemperatur 17,9 °C (16,3 °C). Dazu fielen in der Fläche etwa 200 l/m² (187 l/m²) Niederschlag. Die Sonne schien abgerundet 700 Stunden (676 Stunden).

Brandenburg und Berlin: Im Sommer 2020 war die Bundeshauptstadt mit einer Temperatur von 20,0 °C (17,7 °C), einer Niederschlagssumme von 135 l/m² (182 l/m²) und einer Sonnenscheindauer von gut 710 Stunden (664 Stunden) die wärmste, trockenste und sonnigste Region Deutschlands. Brandenburg war mit 19,3 °C (17,3 °C) das zweitwärmste Bundesland. Hier wurden 155 l/m² (177 l/m²) Regen und gut 695 Sonnenstunden (662 Stunden) aufgezeichnet.

Sachsen-Anhalt: Mit einer Mitteltemperatur von 19,0 °C (16,9 °C) gehörte Sachsen-Anhalt im Sommer 2020 zu den wärmeren Gebieten. Bei gut 690 Sonnenstunden (610 Stunden) fielen im Sommer rund 155 l/m² (174 l/m²). In Bottmersdorf / Klein Germersleben, südwestlich von Magdeburg, wurden am 13.6. bei schweren Gewittern enorme 133,4 l/m² in 24 Stunden erfasst. Das ist der höchste Tagesniederschlag seit Messbeginn in diesem Bundesland. Die deutschlandweit niedrigste Temperatur wurde am 1.6. von der Station Oberharz am Brocken-Stiege mit 0,5 °C übermittelt. 

Sachsen: Für das Bundesland Sachsen berechnete der DWD ein Temperaturmittel von 18,7 °C (16,5 °C). Dazu fielen in der Summe karge 210 l/m² (222 l/m²) Niederschlag. Besonders trocken blieb es in den nördlichen Regionen. Die Sonne schien landesweit gut 670 Stunden (609 Stunden). 

Thüringen: Thüringen meldete warme 18,1 °C (15,8 °C), als zweitsonnenscheinärmste Region 620 Sonnenstunden (592 Stunden) und mit 220 l/m² (210 l/m²) ausreichend Niederschlag. Die meisten Niederschläge gab es dabei im Thüringer Wald. 

Nordrhein-Westfalen: Im bevölkerungsreichsten Bundesland lag die Sommertemperatur bei 18,3 °C (16,3 °C) und die Sonnenscheindauer bei gut 590 Stunden (554 Stunden). Somit war NRW das sonnenscheinärmste Bundesland. Dabei blieb es mit 190 l/m² (240 l/m²) Niederschlag deutlich zu trocken.

Hessen: In Hessen erreichte der Sommer 2020 bei gut 645 Sonnenstunden (586 Stunden) eine Temperatur von 18,2 °C (16,2 °C). Mit einem Flächenniederschlag von 170 l/m² (222 l/m²) blieb es weiterhin zu trocken. Starkregengewitter brachten vor allem im August vielerorts eine leichte Entspannung bei der Trockenheit, wenngleich vor allem Richtung Rhein die Niederschläge nur spärlich fielen. 

Rheinland-Pfalz: In Rheinland-Pfalz verlief der Sommer 2020 mit 18,6 °C (16,3 °C) zu warm und mit mageren 150 l/m² (218 l/m²) überregional deutlich zu trocken. Die Station Mainz-Lerchenberg erfasste im Sommer gerade einmal knapp 75 l/m². Die deutschlandweit höchste Temperatur wurde am 9.8. mit 38,6 °C in Trier-Petrisberg gemessen. Die Sonne schien 653 Stunden (595 Stunden).

Saarland: Das kleinste Flächenland erlebte mit einer Niederschlagsbilanz von 140 l/m² (226 l/m²) den trockensten Sommer in der Region seit 1983. Bei warmen 18,7 °C (16,7 °C) schien die Sonne rund 680 Stunden (631 Stunden). 

Baden-Württemberg: Im Sommer 2020 ermittelte der DWD für Baden-Württemberg eine Temperatur von 18,1°C (16,2 °C). Der Flächenniederschlag erreichte zu trockene 255 l/m² (292 l/m²). Insbesondere in der oberrheinischen Tiefebene fällt die klimatische Niederschlagsbilanz stark negativ aus. Trotzdem war Baden-Württemberg im Vergleich die zweitnasseste Region. Die Sonne schien 710 Stunden (636 Stunden).

Bayern: Der Freistaat war im Sommer 2020 mit einer Durchschnittstemperatur von 17,5 °C (15,8 °C) die zweitkühlste Region. Starkregengewitter und Dauerniederschläge führten zu einer Niederschlagsmenge von rund 350 l/m² (314 l/m²). Damit war Bayern das niederschlagsreichste Bundesland. In Oberbayern fielen Anfang August innerhalb von 24 Stunden 100 bis 150 l/m². Aschau-Innerkoy meldete am 3. 8. mit 152,4 l/m² den höchsten Tagesniederschlag. In den bayerischen Alpen fingen die Stationen des DWD über den Sommer hinweg örtlich über 700 l/m² auf. Bayern kam auf 685 Stunden (623 Stunden) Sonnenschein. (Quelle DWD)

Beobachtungen zum Klimawandel: Deutschlandwetter September 2020

Offenbach, 29. September 2020 – Der September 2020 verwöhnte die Bundesbürger wochenlang mit sonnigem und warmem Outdoor-Wetter. Erst zum Monatsende sorgte ein Großwetterlagenwechsel pünktlich zum astronomischen Herbstanfang für kühle und nasse Witterung. Unter dem Strich war der erste klimatologische Herbstmonat zu warm, zu trocken und sehr sonnig – verglichen mit vieljährigen Mittelwerten. Das meldet der Deutsche Wetterdienst (DWD) nach ersten Auswertungen der Ergebnisse seiner rund 2 000 Messstationen.

Ein überwiegend sommerlich warmer September endet mit herbstlicher Kühle
Mit 14,8 Grad Celsius (°C) lag der Temperaturdurchschnitt im September um 1,5 Grad über dem Wert der international gültigen Referenzperiode 1961 bis 1990. Im Vergleich zur wärmeren Periode 1981 bis 2010 betrug die Abweichung +1,3 Grad. Die ersten drei Wochen zeigten sich unter Hochdruckeinfluss meist spätsommerlich warm. Im Südwesten gab es 10 bis 18 Sommertage mit 25 Grad und mehr. Mitte September drehte die Strömung auf südliche Richtungen, wodurch die Temperaturen regional noch mal auf deutlich über 30 °C kletterten. Den höchsten Wert erreichte Trier-Petrisberg am 15. mit 34,8 °C. In den darauffolgenden Nächten wurde es aber empfindlich kalt. Im Nordosten Deutschlands sanken die Frühwerte am 19. sogar in den leichten Frostbereich. Die deutschlandweit tiefste Temperatur trat am 28. in Messstetten, Zollernalbkreis, mit -2,0 °C auf. (Nur auf der fast 3000 m hohen und nicht repräsentativen Zugspitze war es am 26. mit -10,9 °C kälter).

Erst nach drei Wochen Trockenheit reichlich Niederschläge
Der September lag mit knapp 50 Litern pro Quadratmeter (l/m²) etwa 20 Prozent unter dem vieljährigen Durchschnitt von 61 l/m². Nachdem es unter Hochdruckeinfluss vielerorts wochenlang trocken blieb, sandten Tiefdruckgebiete in der letzten Septemberwoche flächendeckende und reichliche Niederschläge. Sie brachten in den Mittelgebirgen sogar den ersten Schnee der Saison. Am Alpenrand sowie im Südschwarzwald fielen mit über 150 l/m² die höchsten Monatssummen. Auch der in den Vormonaten vom Regen ausgesparte Osten der Republik erhielt nun endlich signifikanten Regen. Die bundesweit höchste Tagessumme wurde aber am 26. in Baiersbronn-Ruhestein, 20 km südlich von Baden-Baden, mit 107 l/m² gemessen. Viel zu trocken blieb es dagegen in Schleswig-Holstein, Hamburg, Bremen und Hessen, wo in der Fläche gerade einmal 50 Prozent der zu erwartenden Monatssummen eingesammelt wurden.

Der September 2020 war ein sehr sonniger Monat
Mit 206 Sonnenstunden übertraf der September 2020 sein Sonnenscheinsoll von 150 Stunden um gut ein Drittel. Dabei gab es in den ersten beiden Monatsdekaden verbreitet Sonnenschein von früh bis spät. Am sonnigsten war es mit über 230 Stunden in Mitteldeutschland. Im Nordseeumfeld zeigte sich die Sonne etwa 50 Stunden weniger.   

Das Wetter in den Bundesländern im September 2020
(In Klammern stehen jeweils die vieljährigen Mittelwerte der intern. Referenzperiode)  

Schleswig-Holstein und Hamburg: Schleswig-Holstein war im September 2020 mit einer Temperatur von 14,2 (13,2 °C) und einer mageren Niederschlagsausbeute von gut 40 l/m² (75 l/m²) nicht nur das kühlste, sondern auch ein trockenes Gebiet. In Kiel-Holtenau wurden mit knapp über 10 l/m² noch nicht einmal 20 Prozent des Solls erreicht. Hamburg registrierte einen Mittelwert von 14,8 °C (13,7 °C). Auch hier blieb es mit einem Flächenniederschlag von rund 40 l/m² (68 l/m²) deutlich zu trocken. Mit rund 190 Sonnenstunden zählten sowohl die Hansestadt (139 Stunden) als auch Schleswig-Holstein (143 Stunden) zu den sonnenscheinärmeren Regionen.

Niedersachsen und Bremen: In Niedersachsen bestimmte der DWD eine Mitteltemperatur von 14,5 °C (13,5 °C). Bremen kam auf 14,8 °C (13,7 °C). Mit aufgerundeten 30 l/m² fiel in Bremen weniger als die Hälfte der zu erwartenden Niederschlagsmenge (61 l/m²). Damit war die Hansestadt die trockenste Region Deutschlands. Niedersachsen kam auf gut 45 l/m² (60 l/m²). Nicht nur Niedersachsen (135 Stunden), sondern auch Bremen (136 Stunden) meldeten gut 195 Sonnenstunden.

Mecklenburg-Vorpommern: In Mecklenburg-Vorpommern betrug die Temperatur 14,8 °C (13,4 °C). Die Niederschlagsmenge erreichte rund 55 l/m² (51 l/m²). Die Sonne zeigte sich 195 Stunden (154 Stunden). An der Station Barth, im Landkreis Vorpommern-Rügen, wurden am frühen Morgen des 19. frostige -1,1 °C gemessen. 

Berlin und Brandenburg: Die Hauptstadt war im September mit einer Temperatur von 15,9°C (14,1 °C) die bundesweit wärmste Region. Aus Brandenburg wurden 15,4 °C (13,8 °C) gemeldet. Nach monatelanger Trockenheit schickte das Tiefdruckgebiet Xyla am 26. mit überregionalen 15 bis 40 l/m² den langersehnten Landregen. Im Landkreis Märkisch-Oderland wurden sogar 40 bis knapp über 50 l/m² beobachtet. In der Monatsbilanz sammelten die Niederschlagstöpfe in Berlin gut 55 l/m² (46 l/m²) und in Brandenburg aufgerundete 60 l/m² (45 l/m²) ein. Brandenburg gehörte damit zu den nassen Regionen Deutschlands. Die Sonne schien in Berlin und Brandenburg rund 210 Stunden (156 Stunden).

Sachsen-Anhalt: In Sachsen-Anhalt lag die Mitteltemperatur bei 15,4 °C (13,7 °C). Trotz eines überdurchschnittlichen Flächenniederschlags von 50 l/m² (42 l/m²) schien die Sonne mit rund 210 Stunden (144 Stunden) ungewöhnlich lang.

Sachsen: Die Durchschnittstemperatur erreichte in Sachsen 15,0 °C (13,4 °C). Dazu fielen durchschnittliche 55 l/m² (55 l/m²) Niederschlag. Mit einer auffallend hohen Sonnenscheindauer von rund 225 Stunden (148 Stunden) war der Freistaat das sonnenscheinreichste Bundesland.   

Thüringen: Im Ländervergleich war Thüringen mit 14,5 °C (12,8 °C) verhältnismäßig kühl. Die Niederschlagsmenge betrug 45 l/m² (51 l/m²). Mit 215 Stunden (143 Stunden) zeigte sich die Sonne im zweitsonnigsten Bundesland ungewöhnlich häufig.

Nordrhein-Westfahlen: In NRW datierten die Meteorologen 14,9 °C (13,6 °C) und trockene 50 l/m² (67 l/m²). Die Sonne schien sehr oft und zeigte sich in der Bilanz 200 Stunden (135 Stunden).

Hessen: Hessen meldete eine Temperatur von 14,9 °C (13,2 °C) und rund 210 Sonnenstunden (142 Stunden). Damit dürfte das Jahr 2020 nach 1959 für den zweitsonnigsten September in Hessen seit Messbeginn sorgen. Mit 30 l/m² Niederschlag fiel im zweittrockensten Bundesland die Hälfte des zu erwartenden Solls (57 l/m²).

Rheinland-Pfalz: Mit 15,8 °C (13,5 °C) war Rheinland-Pfalz eine warme Region. In Trier-Petrisberg wurde am 15. mit 34,8 °C die deutschlandweit höchste Temperatur im September 2020 gemessen. Mit rund 45 lm/² (60 l/m²) blieb es weiterhin zu trocken. Die Sonne schien 200 Stunden (151 Stunden).

Saarland: Hier, in der vergleichsweise zweitwärmsten Region, ermittelte der DWD eine Temperatur von 15,9 °C (13,7 °C), gut 60 l/m² (70 l/m²) Niederschlag und rund 190 Sonnenstunden (158 Stunden). Am 15. wurde es nochmal richtig heiß. Saarbrücken-Burbach meldete mit 34,1 °C einen neuen Monatsrekord für das kleinste Flächenland.

Baden-Württemberg: In Baden-Württemberg erfassten die Wetterstationen des DWD 15,1 °C(13,3 °C). Entlang des Rheins wurden nochmal bis zu 18 Sommertage registriert. Die deutschlandweit tiefste Temperatur trat am 28. in Messstetten mit -2,0 °C auf. Dazu blieb es mit rund 50 l/m² (70 l/m²) verbreitet zu trocken. Nur der Schwarzwald stach mit deutlich höheren Niederschlagsmengen von teils über 100 l/m² hervor. Hier kam es zwischen dem 24. und 26. nicht nur zu stärkeren Regenfällen, auch winterlich wurde es kurzzeitig oberhalb von 1000 Metern. Die bundesweit höchste Tagessumme wurde am 26. in Baiersbronn-Ruhestein, südlich von Baden-Baden, mit 107 l/m² erfasst. Die Sonne schien in Baden-Württemberg rund 205 Stunden (166 Stunden).

Bayern: Der Freistaat war mit 14,3 °C (12,8 °C) das zweitkühlste und mit rund 65 l/m² (72 l/m²) das nasseste Bundesland. Am niederschlagsreichsten waren die Alpen mit über 150 l/m². In Ruhpolding-Seehaus, Chiemgauer Alpen, wurden sogar über 200 l/m² gemessen. Am 25. sank mit einsetzenden kräftigen Niederschlägen und zurückgehenden Temperaturen die Schneefallgrenze auf 1000 Meter. Auf der Zugspitze und dem Nebelhorn gab es am 26. sogar 70 cm Neuschnee. Die Sonne schien in Bayern gut 205 Stunden (160 Stunden). Quelle DWD

Basics: Gesättigte Leitfähigkeit des Bodens

Es regnet. Wie schnell wird der Niederschlag vom Boden aufgenommen und entsprechend der Schwerkraft in die Tiefe geleitet?

Um es gleich vorweg zu sagen, es handelt sich um die hydraulische und nicht elektrische Leitfähigkeit. Merke: Hydraulik ist die Wissenschaft von der Wasserströmung.

Bei der Leitfähigkeit geht es um die Leitfähigkeit von Wasser durch den Boden (Wasserströmung). Je dichter ein Boden, desto geringer ist die Wasserdurchleitung im Boden. Von gesättigter Leitfähigkeit wird deshalb gesprochen, weil ein trockener Boden zunächst einmal die Bodenporen flutet und erst bei der maximal möglichen Wasseraufnahme das Wasser in die Tiefe weiterleitet. Das kann man sich so vorstellen: Ein Schwamm gibt erst Wasser in die Tiefe entsprechend der Schwerkraft ab, wenn er zu 100 % wassergesättigt ist.

Gemessen wird die Wasserdurchlässigkeit eines wassergesättigten Bodens gem. DIN 19683 Bl. 9, abgekürzt kf und in cm/d gemessen.

Folgende Anhaltswerte nennt die Humboldt- Universität Berlin :

kf-Wert
(cm/d)
BezeichnungBodenartBeispiel
1 ( – 0,9)sehr geringU, tUSchluff, toniger Schluff
2 (1 – 10)geringtU – uLtoniger Schluff – schluffiger Lehm
3 (10 – 40)mitteluT – lTschliffiger Ton – lehmiger Ton
4 (40 – 100)hochfS, utLFein- Sand, schluffiger, toniger Lehm
5 (100 – 300)sehr hochmSMittel- Sand
6 (300 – )äußerst hochgS, GGrobsand, Geröll, Kies

Die Messung der Gesättigten, hydraulischen Leitfähigkeit des Bodens erfordert erhebliches Fachwissen und Routine und sollte den Bodeninstituten vorbehalten bleiben.

Basics: Schlupf

Bei einem Fahrzeug entsteht eine Schlupfspur, wenn der Reifen durchdreht oder blockiert. Fußgänger legen eine Schlupfspur, wenn die Füße unter ihnen wegrutschen, also auch, wenn sie zu schnell beschleunigen (ausrutschen) oder abbremsen (mit Anlauf auf dem Eis schlittern). Auch Pferde haben Schlupf: Wenn ein Pferd plötzlich losgallopiert und wegrutscht oder aber in der vollen Vorwärtsbewegung einen Stopp vollführt.

So schnell kann das Grünland geschädigt werden: Einmal schnell mit dem Trecker die Raufe umstellen.

Schlupf ist also der Unterschied zwischen der geplanten Strecke und der dafür benötigten Antriebskraft und der tatsächlich zurückgelegten Strecke.

Definition
Schlupf definiert sich durch die verlorene Wegstrecke. Die Differenz der Radgeschwindigkeit und der Bewegungsgeschwindigkeit, ins Verhältnis gesetzt zur Radgeschwindigkeit, ist Schlupf
Verein Deutscher Ingenieure
VDI Richtlinie 6101, Maschineneinsatz unter Berücksichtigung der Befahrbarkeit landwirtschaftlich genutzter Böden, 2014

Beim Traktor kann der Schlupf relativ einfach ermittelt werden und wird bei den neueren Fahrzeugen Auf einem Display im Führerhauses angezeigt.

Schluffformel
Schlupf ist der Unterschied zwischen dem geometrisch ermittelten Radumfang ( U = pi x d) und der tatsächlichen zurückgelegten Strecke nach genau einer Radumdrehung.
Schlupf = 1 – (Radumfang : tatsächlich zurückgelegte Wegstrecke)
Auch Pferde schädigen das Grünland durch Schlupf, besonders wenn der Boden beim Weidegang zu nass ist.

Je stärker der Schluff, desto gravierender die sog. Schluffspur, also die glänzende, sehr stark und dauerhaft verklebte, nahezu wasserdichte Spur. Schlupfspuren sorgen oftmals für eine mehrjährige Bodenschädigung durch Verdichtung.

Jeder kennt das komplette Durchdrehen der Räder bei keinem Vortrieb: Festgefahren. Unterschätzt wird aber der teilweise Schlupf, wenn z.B. die Räder sich doppelt so schnell drehen, der zurückgelegte Weg aber nur halb so weit ist. Der/die Fahrer*in merkt selber beim Fahren nicht, wenn es sich z.B. um einen 20% oder 30%igen Schlupf handelt. Schon in diesem Bereich wird eine bodenschädigende Schlupfspur, also Verdichtungsspur gelegt.

Schlupf in %Bewertung
0 – 10 %gut, wenig Bodenverdichtung
15%grenzwertig, gerade noch tolerabel
> 20%nicht mehr akzeptabel
100 %Räder drehen komplett durch, kein Vortrieb
Die Schädigung des Bodens ist stark abhängig vom Wassergehalt und der Bodenart. Je nasser der Boden und je feiner die Bodenkörnung, desto höher die Verdichtung.

MERKE: Je größer die Antriebskräfte (Gasgeben) der die Bremskräfte (Bremsen), desto größer die Schlupfgefahr. Also: Samthände beim Steuern und Samtfüße beim Gasgeben und Bremsen beim Fahren auf dem Pferdegrünland. Kein Sliding! Die Pferdeweide ist kein Ort für Trecker-Poser.

Sind Fahrspuren breiter als der Reifen, die Stollenabdrücke zerwühlt und befinden sich zahlreiche Erdanhaftungen zwischen den Stollen, dann ist das ein sicheres Anzeichen für zu hohen Schlupf.

Je tiefer ein Traktorreifen in seiner Fahrspur einsackt, umso stärker muss er „bergauf“ fahren, Schlupf wird wahrscheinlicher.

Wer keine Schlupfanzeige zur Verfügung hat und sicher gehen will, der*die kann das Ausmass des Schlupfes auch selbst messen:

1. Zählen der Anzahl der Radumdrehungen, die der Reifen auf einer bestimmten Wegstrecke zurücklegt. Tipp: Reifen an einer Stelle markieren und Aufnahme in Zeitlupe mit dem Smartphone oder Tablet.

2. Teilen der gezählten Radumdrehungen durch die theoretische Anzahl an Radumdrehungen in den Herstellerangaben (Abrollumfang wird in der Produktbeschreibung des Reifenherstellers genannt).

3. Ergebnis mit 100 multiplizieren, Ergebnis ist der Schlupf in Prozent. Schlupfwert. Werte über 15% sind zu hoch!